

ESA studies related to cryosphere altimetry

AltiCryo User Meeting – Feb 3rd 2017

ESA UNCLASSIFIED - For Official Use

Overview

1) cryosat enhanced continuity

- Concepts for Cost-effective Cryosat Enhanced Continuity
- extension: Addition of Ka-Band for Cryosat Follow-On
- extension: (Ku+Ka)-Band Antenna for Cryosat Follow-On
- Cryosat Fast-Track Follow-On

2) wide swath

- extension: Measurement performances of wide swath altimetry missions
- Interferometric antennas at Ku and Ka band with modest baselines for wide swath altimetry
- Swath Altimeter for Operational Oceanography Feasibility Study
- coming up: Feasibility Study into Multibeam Wide Swath Altimetry

3) Arctic+

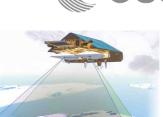
4) Polaris

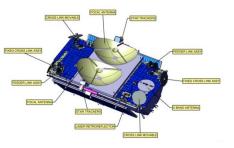
1.1 Concepts for Cost-effective Enhanced Cryosat Continuity

Status:

Final Review was on 30/11/16 Contractor: TAS

Objectives:


- Analyse and discuss the Iridium-PRIME offer (and constraints)
- Assess mission enhancements over the oceans by adding functions for improved ionosphere and troposphere delay corrections
- Analyse the feasibility of adding a wide swath mode
- Define the whole altimetry payload


Conclusion:

- Iridium prime technical feasibility confirmed, with acceptable performance
- Payload: Ku+Ka radar interferometer (POS-4 architecture) as promising option
- Enhancements constrained
 - Swath capabilities (multi-beam) not feasible
 - Accommodation of radiometer not possible
- Programmatic challenges

Error type	Ku	Ku+Ka	Ka	Comments
Altimeter range noise	0,80 cm	0,80 cm	1,50 cm	Based on SAR mode in Ku- and Ka-Band.
Sea state bias	2,00 cm	2,00 cm	2,00 cm	
				Ku, Ka : Correction with ionosperic models
onospheric error	2,00 cm	0,50 cm	0,30 cm	Ku+Ka : Correction with dual frequencies Ku & Ka (scale = 100 km)
Dry tropospheric error	0,70 cm	0,70 cm	0,70 cm	
Net tropospheric error	3,00 cm	3,00 cm	3,00 cm	Correction with tropospheric model
TOTAL RMS	4,26 cm	3,79 cm	3,98 cm	
				17 / & / & E
(GPS+LRR) POD	2,50 cm	2,50 cm	2,50 cm	
Total RMS with POD	4,94 cm	4,54 cm	4,70 cm	

ESA | 01/01/2016 | Slide 3

ESA UNCLASSIFIED - For Official Use

1.2 Extension: Addition of Ka-Band for Cryosat Follow-On

Status:

Proposal received 19/01/17, Under approval

Contractor: TAS

Objectives:

- Consolidate the design of the SIRAL Follow-On instrument
- Study Ku/Ka dual band instrument option
- System performance consolidation + programmatic elements
- Specification for the Ka-band amplifiers

1.3 Extension: (Ku+Ka)-Band Antenna for Cryosat Follow-On

Status:

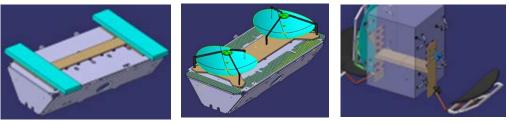
Proposal received 19/01/17, Under approval

Contractor: TAS

Objectives:

- Analyse RF performances of dual-band antenna in Ku and Ka band
- Subsystem consolidation (feedhorn design)
- Study stability and calculate angle-of-arrival error budget
- Study industrial capabilities and programmatic elements

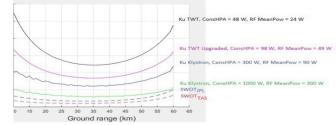
2.1 Extension: Measurement performances of wide swath altimetry missions



Status:

Final Review was on 30/11/16

Contractor: TAS


Objectives:

- Preliminary definition of a parametric wide swath payload
- Calculate associated instrument performances and provide these to Mercator as
 inputs into OSSE activities

Conclusion:

- Set of performance curves supplied to Mercator
- Simulation at Mercator ongoing

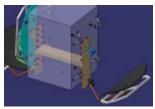
ESA UNCLASSIFIED - For Official Use

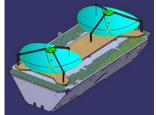
2.2 Interferometric antennas at Ku and Ka band with modest baselines for wide swath altimetry Status:

System Requirements Review completed in Sept 2016

Concept Selection Review planned for Feb 2017

Contractor: TAS


Objectives:


- Survey of state-of-the-art and requirements
- Trade-off analysis of the antenna and selection of 2 antenna architectures
- Detailed Design and Analysis of the 2 selected antenna architectures
- Conclusion and development roadmap

ESA UNCLASSIFIED - For Official Use

2.3 Swath Altimeter for Operational Oceanography - Feasibility Study

Status:

Ongoing procurement, Kick-Off expected in the next month, duration 12 months **Objectives:**

- Formulate user requirements
- Trade off system elements and payload complement
- Selection and detailed analysis of mission concept
- Study calibration concepts
- Development plan

3. Arctic+ Activities

Programme started following the ESA/CliC scientific consultation meeting on Earth Observation and Arctic Research Priorities held on 20 January 2015 in Tromsø.

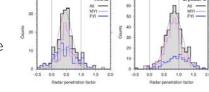
1. Improving observations and understanding of snow on Arctic sea ice **Objectives:**

- Explore, develop and validate different approaches to retrieve snow thickness over sea ice
- Develop a new prototype processor
- Produce and validate an experimental dataset of snow thickness over the Arctic.

Team: isardSAT PL (prime contractor), University College London (UCL), York University (YU) and Finish Meteorological Institute (FMI).

Status: The project kicked off 5th of October 2016. The work during first quarter has been focused on the consolidation of the scientific requirements, collection of the required datasets

2. Towards a reconciled estimate of Arctic sea ice mass

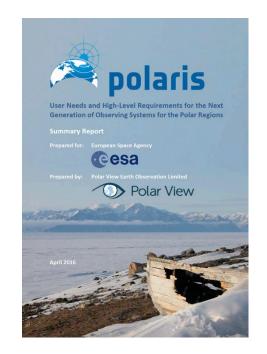

Objectives:

- Derive a reconciled sea ice mass estimate
- Intercomparison of ice mass balance estimates from different remote sensing approaches and models
- Develop recommendations for future research and EO missions

Team: isardSAT PL (prime contractor), York University, University College London (UCL), Finish Meteorological Institute (FMI) and Alfred Wegener Institute (AWI).

Status: The project kicked off 5th of October 2016

ESA UNCLASSIFIED - For Official Use


coverage of CS2 (orange) and AltiKa (blue) for over 7 days (left). 10 days (mide

ESA | 01/01/2016 | Slide 9

4. Earth Watch / Polaris Programme

- Polaris User Requirement Study
 - multi-frequency SAR ranked highly
- Working with EC on evolution of Copernicus Space Segment
 - Polar and Snow Cover User Requirements Workshop
- System Design Studies
 - Hosted Arctic Imager (HAI)
 - L-band SAR in tandem with S-1 (Polar train)
 - PAP: platform study for CS2 enhanced continuity

ESA | 01/01/2016 | Slide 10

ESA UNCLASSIFIED - For Official Use

Altimetry in the age of operational Remote Sensing

Erik De Witte - January 2017

ESA UNCLASSIFIED - For Official Use

Purpose

- To stimulate discussion, and gather inputs/feedback that will feed into:
 - Shared vision for future altimetry roadmap
 - Improved inter-agency coordination
 - Guidance to new activities
 - Timeline for future altimetry mission concepts
 - Basis to develop technology roadmaps
 - Converging on a vision for the future observation system of systems that is shared among different communities (ocean and cryosphere)

The 4 Components of the Current Altimetry **Observation System**

Jason-3

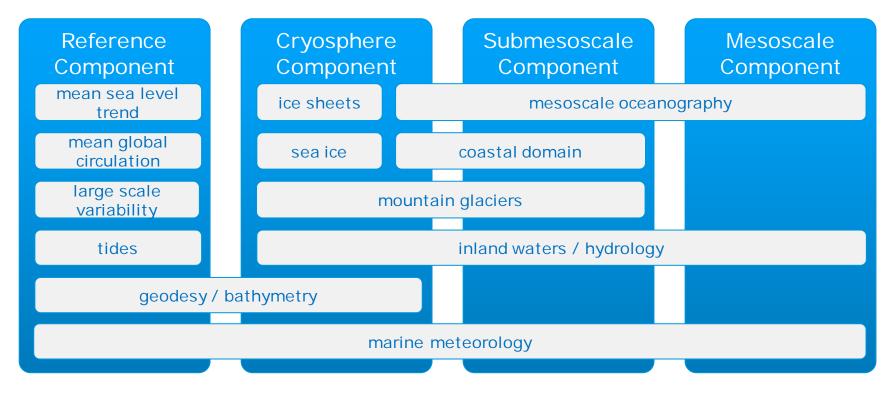
Source: "The Next 15 Years of Satellite Altimetry": http://www.ceos.org/images/OST/SatelliteAltimetryReport 2009-10.pdf

Submesoscale Component

Cryosphere Component

Mesoscale Component

Sentinel-3


SARAL

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 13

Applications by Altimetry Observation System Component

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 14

•

What are the Core Requirements for the Cryosphere Component?

- Orbit / Constellation / No of satellites?
- Multi-band Ku/Ka
 - Sea ice
 - What are the benefits for land ice?
- Interferometric capability (Ku+Ka / Ku / Ka)
- Improve observations at finer scales & coastal areas
 - Interferometric swath processing
 - How does this trend drive design of future systems?
 - Full SAR processing?

Component ice sheets sea ice mountain glaciers

Cryosphere

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 15

•

Timeline of Current & Planned Missions

Current and Planned				2017-2019		2020-2	025					2030)-2039		
Reference Componen		and the station states	12261		 										
JASON-2/OSTM	POS-3	nadir altimeter	1336km/66°		 				-						
JASON-3	POS-3	nadir altimeter	1336km/66°										_		
S-6A	POS-4	nadir altimeter	1336km/66°												
S-6B	POS-4	nadiraltimeter	1336km/66°												
HY-2C(*)	ALT	nadir altimeter	1336km/66°												
HY-2D(*)	ALT	nadir altimeter	1336km/66°												
HY-2F(*)	ALT	nadir altimeter	1336km/66°												
HY-2G(*)	ALT	nadir altimeter	1336km/66°										: :		-
Cryosphere Compone	ent	·								•					
Cryosat-2	SIRAL-2	ISAR altimeter	717km/92°												
Mesoscale Componei	nt	ł	•												
SARAL	AltiKa	nadir altimeter	SSO (800km)												
S-3A	SRAL	nadir altimeter	SSO (814km)		 										
S-3B	SRAL	nadir altimeter	SSO (814km)												
S-3C	SRAL	nadir altimeter	SSO (814km)		 										
5-3D	SRAL	nadir altimeter	SSO (814km)		 										
HY-2A	ALT	nadir altimeter	SSO (0 (4 km))		 	_									
1Y-2A 1Y-2B	ALT	nadir altimeter	SSO (964km) SSO (973km)		 	-									
HY-2E	ALT	nadir altimeter	SSO (973km)								: :		: :	:	
Sub-Mesoscale Comp			0.0.1. (= 0.)		: :	_		:	; T		:				
SWOT	KaRIN	swath altimeter	891km/78°												
COMPIRA	SHIOSAI	swath altimeter	TBD												
HY-2H		swath altimeter	SSO (973km)									-	1		

ESA | 01/01/2016 | Slide 16

+

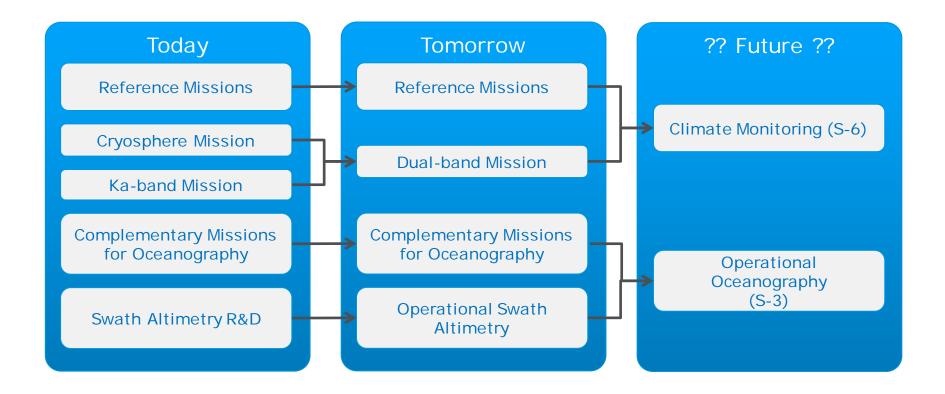
How to Evolve the Observation System?

Reference Compone	nt					1	
JASON-2/OSTM	POS-3	nadir altimeter	1336km/66°				
JASON-3	POS-3	nadir altimeter	1336km/66°				
S-6A	POS-4	nadir altimeter	1336km/66°				
S-6B	POS-4	nadir altimeter	1336km/66°		•	Reference and	mesoscale
HY-2C(*)	ALT	nadir altimeter	1336km/66°			components a	re in Copernicus
HY-2D(*)	ALT	nadir altimeter	1336km/66°				
HY-2F(*)	ALT	nadir altimeter	1336km/66°		•	What about th	ne other two?
HY-2G(*)	ALT	nadir altimeter	1336km/66°			What about th	
Cryosphere Compon	ent	·	·				
Cryosat-2	SIRAL-2	ISAR altimeter	717km/92°		•	Can we conso	lidate the
Mesoscale Compone	nt					obsorvations	ustom architocturo
SARAL	AltiKa	nadir altimeter	SSO (800km)				ystem architecture
						to address all	altimetry
S-3A	SRAL	nadir altimeter	SSO (814km)			applications w	ith a perpetually
S-3B	SRAL	nadir altimeter	SSO (814km)				1 1 5
S-3C	SRAL	nadir altimeter	SSO (814km)			operational sy	/stem?
S-3D	SRAL	nadir altimeter	SSO (814km)				
						What would th	nat look like and
HY-2A	ALT	nadir altimeter	SSO (964km)				
НҮ-2В	ALT	nadir altimeter	SSO (973km)			how do we ge	t there?
HY-2E	ALT	nadir altimeter	SSO (973km)				
Sub-Mesoscale Com			-	- <u>-</u>	 	What will be t	he role of Europe
SWOT	KaRIN	swath altimeter	891km/78°		•		he role of Europe
						in this?	
COMPIRA	SHIOSAI	swath altimeter	TBD				
HY-2H		swath altimeter	SSO (973km)				

+ + <u>112</u>

Future Trends?

- In the near term future we will see continuation of high-precision nadir-looking "reference missions" (Sentinel-6) and additional missions that provide denser sampling (S-3 and others).
- Will Cryosat-2 be followed by an operational mission (maybe even a two-satellite constellation) within Copernicus, serving all the user communities that can be served by precise dual-band altimetry (cryosphere, oceanography, inland water and snow,..)?
- Could it be possible in the future to merge reference and cryosphere components?
 - Could have multiple satellites phased around non-tide-resonant CS orbit.
 - What might enable this?
 - Or do we need to keep 1 satellite on reference orbit?
 - Role of international partners?
- Could it be possible in the future to merge mesoscale and sub-mesoscale components?
 - Will CS and wide swath altimeter evolve towards very similar payloads, if not identical, with the main difference the orbit and the platform?


ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 18

= II 🛌 :: 🖛 + II 💻 🔚 = II II II = = :: := 🖬 🖬 II = :: II 🕬 💥 🖆

One possible Scenario...

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 19

•

Same ... in a bit more detail

					on-ge						ing/planned speculativ						tive	
Future Missions	2017-2019 2020-2029				.9					20	2030-2039							
Reference & Cryc	o missions / Clima	ate monitoring		-														
S-6A	POS-4	nadir altimeter	1336km/66°															
S-6B	POS-4	nadir altimeter	1336km/66°						:									
Cryosat-2	SIRAL-2	ISAR altimeter	717km/92°															
SARAL	AltiKa	nadir altimeter	SSO (800km)		1													
Cryosat-3	Ku+Ka	ISAR altimeter	717km/92°															
S-6C/D/	?	?	?															
Operational Ocea	anography Missio	ons / mesoscale dyr	amics								-	-						
S-3A	SRAL	nadir altimeter	SSO (814km)															
S-3B	SRAL	nadir altimeter	SSO (814km)															
S-3C	SRAL	nadir altimeter	SSO (814km)															
S-3D	SRAL	nadir altimeter	SSO (814km)															
SWOT	KaRIN	swath altimeter	drifting						4									
S-3E		swath altimeter	drifting						>									
S-3F		swath altimeter	drifting															
						CSC	C Evolut	tion	\geq				CSC-	NG				

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 20

+

Other Unknowns

- Emerging technologies that may change the future of altimetry
 - Constellations of miniaturised altimeters
 - Denser sampling obtained by constellation of small nadir altimeters
 - GNSS/R
 - Role of direct current measurements for (sub-)mesoscale
 - ATI or DCA
 - Dedicated active mission or passive followers
 - Could be implemented as passive followers flying together with swath altimetry mission
- International cooperation
 - China has plans for
 - Reference missions (HY-2C/C/F/G) (*)
 - Complementary missions (HY-2A/B/E)
 - Wide swath mission (HY-2H)
 - Which of those are firmly confirmed? What will their policy be on data sharing?
- Further away in the future, what if any will be the role of laser altimetry?

ESA UNC LASSIFIED - For Official Use ESA | 01/01/2016 | Slide 21

Some more questions to finish off...

- Which scientific challenges and applications are not yet well addressed by the current altimetry observation system? What should be the next priorities?
- In the long-term, will we be able to streamline the altimetry constellation into fewer components? How?
- Will swath altimetry take a place in an operational altimetry constellation? What scientific challenges and operational needs should it address?
- How can we coordinate the future altimetry constellation at national, European and Global levels?
- As we move to finer scales, what auxiliary technologies do we need to develop in order to support the altimetry roadmap? (e.g. high resolution radiometers)

